
Time as a Trade Barrier 

 

By DAVID L. HUMMELS AND GEORG SCHAUR* 

A large and growing share of international trade is carried on 

airplanes.  We model firms’ choice between exporting goods using 

fast but expensive air cargo and slow but cheap ocean cargo.  This 

choice depends on the price elasticity of demand and the value that 

consumers attach to fast delivery and is revealed in the relative 

market shares of firms who air and ocean ship.  We use US imports 

data that provide rich variation in the premium paid for air 

shipping and in time lags for ocean transit to identify these 

parameters and extract consumer’s valuation of time.  By exploiting 

variation across US entry coasts we are able to control for selection 

and for unobserved shocks to product quality and variety that affect 

market shares.   We estimate that each day in transit is equivalent to 

an ad-valorem tariff of 0.6 to 2.1 percent and that the most time-

sensitive trade flows are those involving parts and components 

trade.  Our estimates are useful for understanding the impact of 

sharp declines in air cargo prices on the composition and 

organization of trade, and also useful for assessing the economic 

impact of policies that raise or lower time to trade such as security 

screening of cargo, port infrastructure investment, or streamlined 

customs procedures. 
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Moving traded goods over long distances takes time. Ocean-borne cargo 

leaving European ports takes an average of 20 days to reach US ports and 30 days 

to reach Japan.  Air borne cargo requires only a day or less to most destinations, 

but it is also much more expensive. In 2005, goods imported into the US faced per 

kilogram charges for air freight that were, on average, 6.5 times higher than ocean 

freight charges. 

Despite the expense, a large and growing fraction of world trade travels by air.  

From 1965-2004, worldwide use of air cargo grew 2.6 times faster than use of 

ocean cargo.
1
  In 2000, airborne trade for the US amounted to 36 percent of 

import value and 58 percent of export value for countries outside North America.
2
  

In sum, airplanes are fast, expensive, and increasingly important to trade.  In this 

paper we examine two hypotheses suggested by these facts:  lengthy shipping 

times impose costs that impede trade and firms engaged in trade exhibit 

significant willingness-to-pay to avoid these costs.   

What are these time costs?  Lengthy shipping times impose inventory-holding 

and depreciation costs, which could include literal spoilage (fresh produce or cut 

 

1
 Hummels (2007) calculates that worldwide use of airborne cargo (measured in kg-km) grew 11.7 percent per year 

from 1965-2004 compared to 4.4 percent per year for ocean cargo. The much shorter sample of US imports that we employ 
in the empirical section shows a growing share of air shipments from 1991 to 2000, after which the air share falls through 

2005 (see Figure 1).  
2

 Cristea et al (2011) provide systematic data on trade by transport mode for many countries in 2004.  For example, in 

2004, air cargo as a share of export value was 29 percent for the UK, 42 percent for Ireland, and 51 percent for Singapore; 
22 percent of Argentine and 32 percent of Brazilian imports were airborne 



flowers), or rapid technological obsolescence for goods such as consumer 

electronics. Timeliness is potentially important in the presence of demand 

uncertainty.
3
 Long lags between ordering and delivery require firms to commit to 

product specifications and quantities supplied before uncertain demand is 

resolved. Rapid transport on airplanes can allow firms to shorten response times 

and use late arriving information.   

Time costs may be magnified in the presence of multi-stage global supply 

chains.  Inventory-holding and depreciation costs for early-stage value-added 

accrue throughout the duration of the production chain, and demand uncertainty 

can ripple throughout upstream stages.  Perhaps most importantly, the absence of 

key components due to late arrival or quality defects can idle an entire assembly 

plant, making the ability to ship rapidly worth potentially many times the value of 

the components being transported.
4
   

In this paper we examine the modal choice decisions of firms engaged in trade 

and use the trade-off between fast and expensive air transport versus slow and 

inexpensive ocean shipping to identify the value of time saving.  In the model 

consumers have preferences over goods that are differentiated along both 

horizontal and quality dimensions, and slow delivery reduces consumers’ 

perception of product quality. Producers can improve perceived quality by paying 

a premium to air ship.  Unit shipping costs imply that the air freight premium, 

measured in ad-valorem terms, is decreasing in product prices. That is, high price 

firms incur a smaller increase in delivered prices when they upgrade perceived 

quality using airplanes, and are more likely to air ship goods, while low price 

firms are more likely to employ ocean shipping.   

 

3
 See Aizenman (2004), Evans and Harrigan (2005), and Hummels and Schaur (2010) and the appendix for details.   

4
 Harrigan and Venables (2006) argue that this is an important force driving economic agglomeration, but firms need 

not cluster geographically if long distances can be rapidly bridged with airplanes. 



Consumers’ valuation of time is then revealed in the relative revenues of the 

two types of firms.  Purchases of air shipped varieties are decreasing in proportion 

to the premium paid to air ship, and, conditional on prices, increasing in 

proportion to consumers’ valuation of time. This revenue shifting will be 

strongest when demand is more price elastic and when the time delays are 

greatest.  A consumer buying goods from a nearby exporter may be unwilling to 

pay the air premium to save a few days in transit, but that same consumer will pay 

the air premium if the exporter is many weeks of ocean travel away.  By 

combining our estimates of these two effects we can extract the price-equivalent 

of the consumers’ valuation of each day of delay. 

To estimate this model we use data on US imports from 1991-2005 that allow 

us to construct, for air and ocean modes, measures of revenues, prices, shipping 

costs, and numbers of shipments that are specific to each exporting country x HS 

6 digit product x US entry coast x year.  We combine this with a detailed ocean 

shipping schedule for all ocean vessels worldwide that provides us with shipping 

times for each exporter x US entry coast.  We then relate relative (air/ocean) 

revenues to relative prices, relative shipping costs and time delays.  We exploit 

variation in the price/speed trade off across countries, products, entry coast and 

time in order to identify consumers’ willingness to pay for time savings. 

The rich structure of the data allows us to address problems related to selection, 

the extensive margin expansion of trade, and unobserved characteristics of 

exporters and products including quality differentiation and inland or port 

infrastructure.  High trade costs induce firms to select out of markets so that 

regressions of export sales on trade costs incorporate both this selection effect and 

an extensive margin (number of firms trading) response to the costs.  We control 

for selection with a two-step estimator that uses the exporter’s sales to the world 

(less the US) for each product x year to predict the probability that it will sell that 

product to the US.  We control for the extensive margin using data on the number 



of shipments so that the normalized dependent variables are akin to average sales 

per firm.   

A recent literature emphasizes the importance of quality differentiation in trade, 

where quality is typically measured either as price variation or as a residual of 

quantity demanded controlling for prices.  Unlike this literature we have an 

explicit measure of one aspect of quality, timely delivery, for which we directly 

estimate consumers’ valuation.  In addition, we employ various fixed effect 

estimators to provide strong controls for unobserved quality and variety (the 

number of firms shipping a good) that affect relative revenues.   

In the most robust treatment we exploit variation across US entry coasts.  

European ocean cargoes arriving on the US west coast must traverse the Panama 

Canal and take 10-14 days longer to arrive than those reaching the east coast (and 

vice versa for Asia). We can then hold fixed hold fixed unobservables that are 

specific to an exporter x product x time and exploit this quirk of geography to 

generate variation across US coasts in the relative share of air shipping as a 

function of relative time delays, and relative freight prices.  This allows us to 

control for unobserved quality variation in a manner that is considerably more 

general than what is found in the literature on estimating import demand 

elasticities or in the literature on quality and trade.  It also permits us to hold fixed 

the characteristics of exporters – their geography, income, infrastructure – that 

may affect usage of air shipments. 

We find that air/ocean revenues are high when the air freight premium is low, 

and when shipment lags are long.  In the pooled specifications we estimate that 

each day in transit is worth from 0.6 to 2.1 percent of the value of the good.  We 

also estimate the model separately for each End-Use category and find 

considerable heterogeneity across products in time sensitivity. The most striking 

result from the disaggregated product regressions is that parts and components 

have a time sensitivity that is 60 percent higher than other goods. 



While our estimates are based on transport modal choice, they are informative 

about many policies and sources of technological change that speed goods to 

market.  For example, imposing strict port security procedures could significantly 

slow the flow of goods into the domestic market, while investing in more efficient 

port infrastructure may allow goods to reach their destinations more quickly and 

boost trade.
5
   

Our estimates also have implications for changing patterns of trade and the 

international organization of production.  In the post-war era, world trade has 

grown much faster than output with typical explanations attributing this growth to 

declining tariffs and improved technology (information and transportation).  To 

the extent that time is a barrier to trade, declines in air shipping prices may help 

explain both aggregate trade growth and a shift toward trade in especially time 

sensitive goods or forms of production organization. As an example, an important 

recent feature of trade is especially rapid growth in the fragmentation of 

production.  Our estimates show that parts and components are among the most 

time sensitive products.  This suggests that the rapid declines in air transport 

costs, and the corresponding reduction in the cost of time-saving, may be 

responsible for the growth of time and coordination-intensive forms of 

integration.   

The paper proceeds as follows.  Section I models the firm’s choice of shipping 

mode and generates predictions for relative export revenues. Section II describes 

the data and specification issues in estimation. Section III provides results. 

Section IV concludes.  An appendix available online provides further detailed 

description of the related literature, model derivations, sample construction, and 

robustness checks. 

 

5
 Employing aggregate data and a different methodology Djankov et al (2010) identify the cost of a day’s delay in 

inland transit in terms of trade value. Their cost estimates are similar to ours in magnitude. This suggests that the cost of 

delay is similar whether it occurs on land or sea, even though there is no technical reason for why the two different 
approaches should deliver the same estimate.  



I. Theory 

In our data we see exporter-by-product trade flows into the U.S. disaggregated 

by transportation mode -- air and ocean vessel. In many instances, data for a 

single trade flow indicates that both air and ocean modes were used in the same 

time period.  For other flows, only air or ocean are employed in a single time 

period, with modal choice varying across exporters, products, and years.  We 

provide a simple theoretical structure that yields these outcomes in order to 

organize our analysis of modal use and its implications for the value of time 

savings. 

We focus on US import demands within a narrow product category. All 

variables below are product specific, so we suppress product and destination 

superscript for notational ease, reintroducing it where appropriate in the empirical 

section.  Import demand is CES across varieties, summed across export locations j 

and across firms z within each location j, 
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j j jdays      is a price-equivalent demand shifter that depends on a 
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that captures the 

consumer disutility of slow delivery.   

This formulation of demand is similar to the literature on quality in trade, 

including Hallak (2006), Hummels-Klenow (2005), and Hallak-Schott (2011), 

with the exception that these papers treat all elements of quality as unobservable.  

In contrast, we measure timeliness as an important measurable component of 



quality. Time in transit, ( ) jdays z , depends on exporter location because of 

differences in distance to the import market and infrastructure quality, but also on 

the endogenous choice of firm z to pay a premium for timely delivery. 

With real expenditures on product k given by E, demands for firm z from 

exporter j, selling at a delivered price *z

jp  are  
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Other things equal, a consumer gets more utility from a good that arrives sooner 

rather than later, which is expressed by increasing demand for that good.  A 1% 

price reduction raises demand by  %, and a 1 day reduction in delivery times 

raises demand by  .  That is, the time valuation parameter  translates days of 

delay into a price (or tariff) equivalent form, and the elasticity of substitution    

translates this into the quantity of lost sales. 

Turning to the production side of the model, the firm z marginal cost of 

delivering a product from export location j to the market via mode m=air,ocean is 

m

jz g , where z
 
is the marginal cost of production (potentially correlated with 

unobserved quality 
z

j ) and 
m

jg  is a shipping charge proportional to the quantity, 

not the value shipped (see Hummels-Skiba 2004 for evidence on this point).  Air 

shipping is more expensive than ocean shipping, 
A O

j jg g .   

The firm pays fixed costs FC at the beginning of the period and commits to a 

mode of transportation.  The firm charges prices that are a markup over marginal 

costs, * ( ) /z m

j jp z g   .  Multiplying by the quantity demanded from (1) and 

subtracting fixed and variable costs yields 
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To determine the optimal transport mode the firm compares the profitability of 

air versus ocean shipping. The firm chooses air if ( ) > ( )a o

j jz z  . Taking logs of 

(2), assuming that airborne cargoes can reach their destination in one day, and 

simplifying implies 

 

(3) (1 ) ln( ) ln( ) 1 > 0a o o

j j jz g z g days              

    
  

Equation (3) shows that a firm trades the greater expense of air shipping against 

the improved “quality” of a product that arrives 1o

jdays   earlier. Long ocean 

shipping times are more likely to induce a switch to air shipping when consumers 

attach greater value to timeliness, and when goods are closer substitutes. The 

latter effect operates because we have defined   in price equivalent terms in 

order to measure the effect of timeliness on quantities shipped. Higher elasticities 

of substitution translate into larger quantity effects. 

The additive form of shipping costs also implies that modal choice depends on 

marginal costs of production. Since >a o

j jg g , using air shipping always results in 

a higher delivered price, but the magnitude of this difference -- the impact that the 

air shipping premium has on delivered prices -- is decreasing in marginal costs of 

production.  To see the intuition, suppose a pair of shoes can be shipped by air for 

$11 or by ocean for $1. The air freight premium doubles the price of $9 shoes but 

increases the price of $99 shoes by only 10 percent.  Ceteris paribus, higher value 

goods will be more likely to use air shipping. 



Exporting occurs if for the optimal mode, profits from exporting exceed fixed 

costs, or 
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This defines a selection equation indicating whether or not a particular location 

successfully exports a product to the importer and appears in the data.   

From this, we can derive two cases that correspond to modal-use patterns in the 

data.  For a single firm it will be optimal to choose either air or ocean shipping.  

As we show in the online appendix, it is straightforward to derive a probit model 

from equation (3) relating the probability of air shipment to relative shipping 

prices and days in transit.  If all variables are observed we can extract consumers’ 

valuation of time saving from that model.  However, this case poses two 

significant challenges for estimation: we do not observe shipping costs for the 

transport mode not chosen and we cannot control for unmeasured product quality 

variation.   

Consider a second case.  National trade data aggregates over multiple firms.  

Suppose we have two firms from exporter j with different marginal costs such that 

one firm (denoted “o”) ocean ships and the other (denoted “a”) air ships.  Firm o 

generates export revenues inclusive of shipping charges 
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and similarly for firm a.  Writing the revenue equation (5) in relative terms we 

can transform the expressions so that all variables are observable in the data 

(details available in the online appendix).  Denoting origin prices as 
m

jp , and ad-



valorem shipping costs as  = 1 /m m m

j j jf g p  we have an expression for revenues 

(exclusive of shipping costs).   
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Equation (6) captures a trade-off similar to that in equation (3), only expressed 

in revenue rather than probability terms.  Consumers view goods from the two 

firms as imperfect substitutes, and alter their relative purchases as a function of 

relative price and relative quality.  We identify this in the data as a tradeoff – 

ocean shipped goods have lower costs but are perceived by consumers to be of 

lower quality because they arrive days or weeks later than an air shipped good. 

The cost difference induces larger movements in revenues when   is large (the 

goods are close substitutes).  Time delays induce larger movements in revenues 

when   is large and consumers have a higher valuation for timeliness,  .  

Combining estimates of   and   we can extract consumers’ willingness to pay 

for timely delivery.  Finally, we account for the possibility that consumers may 

also perceive a quality difference between the two types of firms that is unrelated 

to timeliness.  This appears as the last term in equation (6).  We discuss this, and 

the endogeneity of ad-valorem shipping charges, at length in Section II. 

Equation (6) generalizes to the case of many firms.  Let 
m

jN  denote the number 

of firms of type 
m

jz , and write aggregate revenues ( )m

jR z  as an aggregation over 

all firms that export using mode m6.  In relative terms, aggregate revenues are 
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 We show in the online appendix that equation (7) is a second order approximation of a model in which heterogenous 

firms draw marginal costs z from a distribution as in Melitz (2003). In that case the mass (number) of firms in each mode 

adjusts continuously in response to changes in time delays and shipping costs, and the included variables for cost and 
quality are weighted averages over the firms in each mode 
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The distinction between revenues per firm and revenues aggregated over 
m

jN  

firms displays the potential importance of a modal extensive margin – defined not 

as the number of firms exporting but the number of firms within an industry that 

export using a given mode of transportation. 

II. Data and Specifications 

A. Data 

We employ data from the U.S. Imports of Merchandise database, 1991-2005, 

with sample construction details reported in the appendix.  When taking equations 

(6) and (7) to the data, an observation is an HS6 digit good k (roughly 5000 

distinct products), exported from country j, arriving at US coast c (c=west, east), 

via mode m (m=air,ocean) in year t.  We have quantities (in kg), the total value of 

the shipments (in US$), shipping charges (US$), and number of distinct shipment 

records for each j-k-c-t trade flow. 

Table 1 reports data on the use of air shipment in our sample.  Over all 

observations, air revenues represent 28 percent of import value7, with higher 

shares for Europe (39 percent) and Asia (27 percent) than for other regions.  This 

primarily represents differences in the product composition of trade across 

regions, as 52 percent of capital goods and 31 percent of consumer goods are air 

shipped, with smaller numbers elsewhere.  The automotive category has the 

 

7
 This is considerably smaller than the 33 percent share of air shipments in non-North American imports.  The 

difference comes from dropping inland shipments from our estimation sample.  



lowest air share (2 percent) because finished cars are rarely air shipped, but has 

higher air shares if we focus more narrowly on parts and components within 

automotive. Looking over all product codes that contain some parts and 

components trade, the air share is 41 percent.   

A modest degree of aggregation allows us to compare revenues, prices, and 

shipping costs for very similar products coming from the same exporter that 

nevertheless use different shipping modes.  Table 1 shows that in the sample as a 

whole we observe “mode mixing observations” – both air and ocean shipping 

employed – for trade equal to 75 percent of total import value.  The mixing 

observations are much more common in Asia and Europe than in other regions, 

again reflecting product composition. Mode mixing is less common for food (50 

percent) and industrial supplies (36 percent), but in other categories ranges from 

85 to 92 percent of trade.  Of note, the air share of trade for the mode mixing 

observations is similar to the air share of trade over all observations. This 

indicates that trade omitted from our mode mixing observations is roughly 

balanced between observations using only air and using only ocean shipments. 

Figure 1 shows the time series on the use of air shipping in the sample. Air 

revenues as a share of imports rise steadily until 2000, after which they fall.  This 

pattern is found when using all observations, or only mode mixing observations, 

and it is found within every regional and product group listed in Table 1.  That is 

to say, the large changes in air usage in our sample are not due to compositional 

change in what is traded but reflect within group changes.  The pattern is also 

consistent with movements in cargo prices in this period, as the cost of air 

shipping fell until 2000, then rose sharply.  These facts suggest that this is an ideal 

period for identifying modal substitution in the data and the extent to which 

higher air shipping prices trade off against more rapid delivery times. 

Table 1 also reports on the premia paid to air ship goods.  For each jkct 

observation we calculate air freight costs relative to ocean freight costs, both on a 



per weight and an ad-valorem basis.  We calculate the air premium per kg as a 

ratio, /A O

jckt jcktg g  , and report the median value over all observations within the 

group.  For All Imports, air freight costs per kilogram are at the median 6.46 times 

higher than ocean freight costs per kilogram.  We calculate the ad-valorem air 

premium as a difference, A O

jckt jcktf f , and again report the median value over all 

observations within the group.  For All Imports, the median ad-valorem air 

premium is 5 percent. That is, ocean shipping costs are equivalent to a 3 percent 

tariff and air shipping costs are equivalent to an 8 percent tariff, so the use of air 

cargo raises delivered prices for the median good by 5 percentage points.  There is 

significant variation in the extent of these premia.  Considering all jckt 

observations in our sample, at the 90th percentile air freight costs per kg are 27 

times higher than ocean freight, and the ad-valorem air premia reaches a hefty 34 

percent.  

The remaining variable needed is ocean shipping time to the US, which we 

derive from a master shipping schedule of all vessel movements worldwide 

provided by the Port2Port Evaluation Tool.  In some of our specifications we 

exploit cross-exporter variation, while in others we exploit within exporter 

variation across entry coasts.  We display transit times in Figure 2.  The horizontal 

axis measures the total transit time to the US, averaging over coasts, while the 

vertical axis measures the difference between transit times to the east coast and 

west coast for a given exporter.  Total transit time varies enormously across 

countries, from as little as a few days to as many as 48 days for some African 

exporters.  A key point here is that, due to quirks of geography, the shipment time 

difference to the US coasts varies considerably across countries.  For Latin 

America countries there is a minimal difference (0-4 days) in travel time to east 

and west coast, European shipments arrive on the east coast 10-14 days before the 



west coast, and some Asian shipments arrive on the east coast up to 14 days after 

the west coast. 

B. Specification 

We can now rewrite equation (7) in terms of observable and unobservable 

components, providing subscripts to reflect the exporter j, product k, time t and 

coast c variation that we will exploit in the data.   
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At its most general, we will exploit variation across all dimensions (exporter j-

product k –coast c-time t) of the data.  In other specifications we experiment with 

different combinations of fixed effects to control for unobservable components in 

the errors.  In our baseline regressions we pool over all HS6 industries, which 

implies that the key elasticities ( ,  ) are identical across all products, and in 

others estimate parameters specific to each end-use category. 

Recalling equation (4), we only observe exports if profits net of fixed costs are 

positive for some firms.  Firms could be selected out of the sample because they 

have high marginal costs of production, face high shipping costs or fixed costs of 

exporting, or because they are selling a time sensitive good and their exports take 

a long time to travel to the US. 

We use a two-step selection model. In the first stage we use the volume of j's 

exports of k at time t to markets other than the US to indicate the latent 

profitability of jkt exports to the US.  For example, suppose Germany has a 



comparative advantage in machine tools.  Then Germany will export a high 

volume of machine tools to the rest of the world and it will be more likely that 

machine tool exports to the US will be sufficiently profitable to exceed fixed costs 

of trade.  We also include (the log of) ocean transit times in the selection equation 

as we are independently interested in how time affects the probability of a 

shipment to the US occurring.  

Revenues per firm (6) and revenues aggregated over firms (7) may behave 

differently in the model if there is an active modal extensive margin, that is, if the 

number of firms of each type changes in response to model variables.  How the 

modal extensive extensive margin adjusts in the data is not immediately clear, and 

it is not a margin that has been contemplated in the literature. Helpman, Melitz 

and Rubinstein (2008), for example, examine whether at least one firm from any 

industry successfully exports to a given destination at a point in time.  With a 

continuum of firms spanning all of manufacturing activity, it seems highly likely 

that some firms are close to the point where small changes in costs induce 

selection in and out of the market. 

In contrast, we employ data that are highly disaggregated (by exporter, HS6 

product, entry coast and time) so there may be few firms involved in any jkct 

trade flow. If none of those firms is close to indifferent between modes, then we 

will not see switching in response to small cost shocks.  In this case, a judicious 

use of fixed effects can absorb the modal extensive margin. 

Our second strategy supposes that firms within a given jkc trade flow switch 

modes over time in response to cost shocks so that fixed effects estimators will be 

insufficient to absorb the modal extensive margin.  Here we use data on the 

number of shipments for a jkct observation to control for the number of firms 

participating in the market. Note that having multiple shipments for a jkct 

observation could reflect multiple shipments by the same firm (during different 

months within the year or to customers in different customs districts within the 



US), or it could reflect distinct shipments by multiple firms. Using the latter 

interpretation, the shipment count variable becomes a useful proxy for the number 

of firms participating in the market.    

Starting from equation (7), we divide revenues by shipments.  Provided that the 

number of shipments is a useful proxy for the number of firms, we now have an 

expression for the average revenues per firm that has eliminated the modal 

extensive margin problem.  Rewriting estimating equation (8) with this adjustment, 

we have  

  

(9)
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C. Prices and Unmeasured Quality 

The standard concern with including prices in a demand equation is that there 

are components of the error terms that are correlated with quantities demanded 

and with prices. Recalling equation (8), the error term 
jktc contains unobservable 

components 
m

jktc  and 
m

jktcN  .  These terms reflect demand shifters that are jktc and 

mode m specific and potentially correlated with regressors of interest, while the 

remaining term 
jktc is uncorrelated with regressors.  It is not feasible to construct 

instruments for prices that are jktcm varying, and so we use the rich panel 

structure of the data to account for the unobserved components of the demand 

equation.  

In what follows we refer to “quality” but this should be read as any demand shifter 

that is potentially correlated with prices.  For example, in specification (8) that uses 



revenues as a dependent variable we are treating the 
m

jktcN extensive margin terms as 

if they were quality, so one can substitute the phrase “variety and quality” 

everywhere “quality” appears in the discussion.  In specification (9) using relative 

revenues per shipment as a dependent variable we will eliminate the 
m

jktcN terms by 

dividing both sides of the equation by a proxy for 
m

jktcN .    

The appropriate fixed effect estimators to use depend on the structure of the 

error term. For example, if quality does not vary across modes for a given 

exporter-product-time, expressing the revenue equation in shares eliminates the 

relative qualities from the expression, or / =1,a o

jktc jktc   =jktc jktc  .  No fixed 

effects are needed as OLS provides a consistent estimator. 

Next suppose that quality varies across modes in an exporter-specific manner 

(i.e. the ratio of air/ocean quality is consistently high for German firms and low 

for Brazilian firms), but assume that the ratio of air/ocean qualities is time 

invariant and the same for each product and coast. In this case quality for mode m 

can be decomposed as =m m

jktc j jktcv  . Expressing in shares eliminates the exporter-

time-specific term, leaving an error of  = ln /a o

jktc j j jktc     .  Inclusion of 

exporter fixed effects eliminates the remaining problematic correlation.  A similar 

line of argument can be used to motivate the use of commodity, exporter and time 

effects singly and in combination to eliminate residual variation in quality.   

Our most robust estimator exploits coastal variation in the data.  Suppose that 

an exporter experiences quality change over time that is product specific and 

where the degree of quality change is systematically related to modal choice. For 

example, Germany rapidly innovates in machine tool quality and new innovations 

are more likely to be airborne than older and more standardized products. To deal 



with this case we write quality differences as =m m

jktc jkt cv   and exploit the presence 

of coastal variation in the data, so that  = ln /a o

jktc jkt jkt jktc       

Here we employ jkt fixed effects and identify relevant parameters by exploiting 

cross-coast variation in all relevant variables. To see how this would work, our 

firms in the German machine tool industry have customers on the US East and 

West coasts. When selling to West coast customers ocean cargo must traverse the 

Panama Canal and requires 14 days longer than for shipments to the East Coast.  

This yields variation across coasts in the relative share of air shipping, relative 

time delays, and relative freight prices. 

The ability to exploit variation in modal shares across coasts allows us to 

control for unobserved quality variation in a manner that is considerably more 

general than what is found in the literature on estimating import demand 

elasticities or in the literature on quality and trade. As an ancillary benefit, the use 

of exporter, exporter-product, and exporter-product-time fixed effects controls for 

many variables that may affect the likelihood of or revenues from air shipping.  

This could include the exporter’s level of development, delays associated with 

customs clearance, the quality of their infrastructure (in absolute terms or 

infrastructure for air relative to ocean shipping), or quirks of geography (being 

land-locked or having significant inland production). 

D. Unit Values as Prices and the Endogeneity of Ad-Valorem Freight Rates 

In our data, the quantity measure is kilograms, and “prices” are values per 

kilogram. Kilograms are not always a unit of quantity that is sensible from a 

utility perspective, which can create problems when using these “prices” to 

estimate demand equations.  To see this, define prices p and shipping costs g in 

terms of a quantity unit q that enters the utility function and is consistent across 

firms and shipping modes. We construct unit value prices as the ratio of total 



value and total kilograms shipped. ˆ = / /p pq wq p w , where = kg /w q is a 

measure of product bulk.  

Shipping firms set prices per kilogram ˆ = /g g w , which means that the price of 

shipping per q varies with product bulk (w). We can rewrite the optimization 

problem and equation (8) keeping in mind the translation between q and kg.   
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The unit value “price” terms now reflect differences in the bulk factor. If the bulk 

factor varies across firms within a product category, then high bulk firms will 

choose to ocean ship and low bulk firms will air ship. This implies unit values 

differences will overstate price differences, and the coefficient on unit values will 

be biased toward zero even if we have perfectly controlled for unobserved quality 

variation.8 For this reason, we will use the coefficients on relative freight prices 

and not unit value differences to identify  . 

A potential concern is that freight prices are endogenous. This could arise 

because ad-valorem freight rates, f, are constructed by dividing per unit shipping 

charges by prices. Or it could be that the unit shipping charges themselves are 

responsive to the quantities shipped.   

Hummels et al (2009) show that the major cause of endogeneity in ad-valorem 

freight prices is differences in the prices of products shipped. This is not a 

concern in the present context for two reasons. As we have just discussed, unit 

values ˆ = /p p w  depend on prices and bulk, and high bulk translates into higher 

 

8
 Suppose that prices per (utility-relevant) quantity unit were the same for two firms but bulk and value per kg differ 

across firms in a way that shifts some goods to boats and some to planes. Since the unit value difference, in and of itself, is 
irrelevant to the consumer there should be no response of modal choice to unit value differences. 



shipping costs both in per unit and ad-valorem terms. That is, variation in bulk 

provides an independent source of variation in relative freight prices that 

identifies the elasticity of substitution.  Of course, unit value differences between 

modes also reflect true price variation and not merely differences in bulk. Were 

we to omit unit values from the regression, or were the regression to omit 

important quality variation, this could potentially bias the coefficients on freight 

charges. However, the regressions explicitly include unit values and employ fixed 

effects to remove quality variation as a source of differences in relative demands. 

A secondary concern is that unit shipping charges, g, are themselves 

endogenous to quantities shipped.  For example, exporters that trade higher 

quantities of goods will invest in better transportation infrastructure, and there 

will be more entry by transport providers on densely traded routes. As Hummels 

et al (2009) show, these scale effects are characteristics of trade routes (i.e. 

particular exporter-importer combinations) and are much stronger when 

considering thinly traded developing country routes, not densely traded routes 

involving the US. Since we employ only US imports data and employ fixed 

effects that remove exporter-specific variation, these scale differences are 

differenced out or swept into constants. 

However, for the sake of completeness we experiment with instrumenting 

strategies for freight rates. Finding instruments that vary across jkct observations 

is difficult. However, if the regessors are sequentially exogenous such that their 

lags are not systematically related with the contemporaneous disturbance, then 

lagged variables are valid instruments. The instrumental variable assumption is 

that past freight rates are correlated with contemporaneous freight rates, but they 

do not significantly explain today’s relative revenues.  



III. Results 

To summarize the discussion to this point, we have shown that consumers who 

value time savings will trade off the higher cost of air shipping against the higher 

implicit quality of a good that arrives several days earlier.  The precise value 

consumers attach to time savings can be extracted by estimating the parameters in 

that tradeoff using equations (8) and (9) along with various fixed effects.  The 

coefficient on relative freight prices identifies consumer sensitivity to price 

changes,  , and the coefficient on days in transit identifies the quality-reducing 

effect of shipment delays, measured in terms of reduced quantities sold, .  

Combining the two yields the price or tariff-equivalent of the time delay, . 

 

A. Baseline Specification 

We begin with estimates that do not condition on selection and pool over all 

products.  Pooling in this way maximizes available observations and yields 

parameters that are observation weighted average of the commodity level 

response. We provide commodity specific parameter estimates below.  Table 2 

reports the results for the relative revenue equation (8) with different sets of fixed 

effects, and standard errors clustered on exporters. Across all five columns, we 

see two clear patterns:  increased ocean shipment times induce substitution toward 

air shipping, and high relative freight prices for air shipping induce substitution 

toward ocean shipping. Table 2 also shows that the coefficient on unit values 

ranges from small and negative to small and positive.  This is consistent with our 

discussion in Section II.D noting that unit values are not prices and that variation 

in freight rates, not unit values, a more reliable measure of the price elasticity of 

demand. 



Consumers valuation of timeliness   is constructed as the ratio of two 

coefficients: ocean days divided by relative freight prices, and the standard errors 

are constructed using the Delta Method. We estimate that time sensitivity 

ranges from 0.003 for the OLS estimates to .021 for the fixed effects that exploit 

differences across coasts for a given exporter-product-time period.  At the high 

end this implies that one additional day in transit is equivalent to a 2.1 percent 

tariff. 

There are significant differences in magnitudes across the specifications and so 

it is worth understanding where those differences come from. Across the 

specifications the number of observations changes depending on the requirements 

of the fixed effects.  The most pronounced change comes in the coast-differenced 

specification because it requires that we observe air and ocean shipments to both 

coasts for a given exporter-HS6 product.  However, if we apply specifications 1-4 

to the sample for column 5 we get very little change in the results.  

Rather, the coefficient pattern reveals the importance of controlling for 

unobserved heterogeneity.  As increasingly stringent fixed effects absorb 

progressively more variation, the estimated price elasticity of demand falls and 

the impact of transit time on the relative revenues increases.  The most 

pronounced change in transit days comes once we introduce exporter fixed effects 

(singly, or in combination with other FE).  Across countries there are likely 

unobserved differences in the relative quality of airport and ocean port 

infrastructure.  There may also be unobserved differences across countries in 

inland shipment costs and inland transit time that primarily affect ocean 

shipments.  This variation is removed from our data, leaving identification of the 

days in transit variable to come from differences across countries in shipping time 

to the US east versus west coast.  If these unobserved country characteristics 

change over time they will still plague specifications in columns 2-4, but they will 

be eliminated in column 5. 



There is a pronounced change in the freight coefficient (the price elasticity of 

demand) when we include commodity fixed effects (additively, or interacted with 

other FE).  Some commodities are more likely to be air shipped than others due to 

physical characteristics such as perishability or weight and size and this 

unobserved information is absorbed by the commodity effect.  Rather than 

identifying this coefficient across variation in dissimilar goods (the small air 

freight premium and high air shares for electronics compared to the large air 

freight premium and low air share for bulky furniture), the commodity FE 

columns identify the coefficient from freight cost variation across different source 

countries and time periods for a given HS6 product. 

A final reason we may see differences across the columns is heterogeneity in 

product quality and variety across observations.  In our discussion of specification 

issues in Section II we indicated many possible dimensions of quality 

heterogeneity that are controlled for across the different specifications in Table 2.  

What we see here is consistent with the view that the OLS estimates overstate the 

response of relative quantities to relative freight prices differences because of that 

unobserved heterogeneity. To understand the direction of the bias, suppose that 

air shipped goods are higher quality than ocean shipped goods, and that higher 

quality goods have lower ad-valorem freight rates (following the discussion of per 

unit freight charges in Section II.D).  In the absence of fixed effects that control 

for quality this generates a negative correlation between quality and relative 

freight rates, and the omitted variable bias is towards finding a larger negative 

effect.  More stringent fixed effects eliminate the bias. A similar argument can be 

used to explain why an endogenous production fragmentation response to low air 



shipping costs would yield the coefficient pattern in Table 2, with the most 

stringent fixed effects eliminating bias.9 

B. Accounting for Selection and the Extensive Margin 

The revenue specifications in Table 2 estimate equation (8) assuming that the 

modal extensive margin, the relative number of firms employing ocean and air 

transport for a given jkct observation, is uncorrelated with the regressors after 

including various fixed effects.  This is a reasonable approach if the modal 

extensive margin exhibits little within variation, but it is problematic if firms 

substitute between modes in response to cost shocks.  We address this case by 

estimating equation (9) using revenues per shipment as a dependent variable. If 

the number of shipments is a good proxy for the number of firms operating in 

each mode, then our dependent variable measures average revenues per firm.   

Table 3 provides estimates of equation (9) with various fixed effects, and shows 

the same sign pattern as Table 2:  high relative air freight prices reduce relative air 

revenues, and longer transit times raise relative air revenues.  Our estimates of   

range from 0.004 to 0.006  (one day is equivalent to a 0.6 percent tariff).  Notably, 

all coefficient estimates are smaller than in Table 2. This suggests that high air 

freight prices and long transit times lower both the number of shipments and 

revenues per shipments, and the smaller estimates in Table 3 are due to 

eliminating the number of shipments channel.  We also see more consistency 

across the columns in Table 3, in contrast to Table 2.  This suggests that the 

number of shipments is an important source of unobserved heterogeneity removed 

 

9
 Suppose firms fragment production when air freight costs are low, and fragmentation leads to a rise in air shipping.  If 

we do not control for the extent of fragmentation, we will see a larger response of air shipping quantities to air shipping 

costs.  Stringent fixed effects control for characteristics of exporters-products-time, including demand for air shipping 
arising from fragmentation.  This lowers the estimated price elasticity and raises estimates of time values. 



by the Table 2 fixed effects.  In Table 3 they are differenced out of the dependent 

variable and so the fixed effects have less impact on the estimates.   

In understanding the economics behind Tables 2 and 3, the key question is what 

the number of shipments are actually capturing.  One view of the data is that we 

are capturing an active modal extensive margin.  As we lower air freight prices or 

increase shipping times we see higher air revenues, and some of this response 

takes the form of firms switching from ocean to air shipping.  When we control 

for this channel we identify a per firm revenue response and so the estimated 

elasticities in Table 3 correspond more closely to the parameters from the model.  

This interpretation is consistent with the Helpman, Melitz, and Rubinstein (2008) 

argument that ignoring the effect of trade costs on the extensive margin will tend 

to overstate their impact at the firm level.   

An alternative view is that changes in the number of shipments do not reflect 

firms switching between modes, but instead reflect changes in the number of 

shipments made by a fixed set of firms. Consider how a single exporting firm 

might respond to a cost shock that boosts demand for its products. It might make 

shipments to customers in several different customs districts instead of one, or 

ship every month rather than every quarter.  This shows up in the data as a rise in 

the number of shipments.  In this case, calculating revenues per shipment as in 

Table 3 eliminates an important channel through which a single firm could see 

enhanced revenue. The shipment frequency response could be especially 

important for time sensitive goods, as firms ship small quantities daily rather than 

aggregating a larger quantity of goods before shipping. We have no way of 

distinguishing which of these views is correct, and think the truth lies somewhere 

in the middle, that is, with per day time costs somewhere between 0.6 and 2.1 

percent ad-valorem. 

There is another extensive margin potentially at work in these data, the 

possibility that high costs and long shipping times could cause a country to have 



zero exports to the US in a particular product.  To address this we employed a 2 

stage Heckman selection estimator.  As detailed in Section II, in the first stage we 

predict the probability that exporter j has positive sales of product k to the US at 

time t using two variables:  j’s exports of k to the rest of the world at time t, 

ROW

jktX and (log) average ocean days for exporter j to the US coasts.  We then 

include the inverse Mills ratio in the second stage of the specifications used in 

Tables 2 and 3.10   

In the first stage we estimate 
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The value of country j’s exports of product k to the rest of the world excluding 

the US is an excellent predictor of the probability of observing those same exports 

to the US. As such, this first stage is of independent interest for future studies that 

might desire a selection variable that operates at the exporter-product-time level.   

Long transit times are negatively correlated with the likelihood of exporting to the 

US, with a coefficient of -0.134 and a marginal effect (at the means) of -0.024.  

The first stage is not a fully specified model of the exporting decision but taking 

the marginal effect at face value we can calculate the impact of a reduction in 

shipping times on the probability of seeing trade.  Reducing the shipping time 

from 23 days (about the average trip length from East Asia to the US)to 20 days 

(about the trip length from Europe to the US) increases the probability of any one 

product from 27.5 percent to 28.2 percent.  

 

10
 We do not include the coast-differenced specification.  Our selection variables generate an inverse Mills ratio with 

jkt variation but it does not vary across coasts for a given exporter-product-time.  When we difference all variables across 

coasts, the Mills ratio is eliminated.  Put another way, once we control for exporter-product-time effects in the coast 
differencing estimation we have no variation left to predict selection into the sample.  



When we include the selection effect in the second stage of the estimate, the 

inverse Mills ratio is correlated with relative revenues and relative revenues per 

shipment.  However, the coefficients of interest are very similar to those found in 

Table 2 and 3.  (Full results available in the appendix).  Taken together this 

suggests that the selection correction does affect relative revenues, but is not 

correlated with the variables of interest once we have included other controls in 

the estimation.   

C. Additional Robustness Checks 

Table 4 reports a set of additional robustness checks.  For brevity we report 

only the coast-differenced specification using relative revenues and relative 

revenues per shipment (similar to column 5 from Tables 2 and 3), and do not 

include the Heckman correction.  Results are similar with other specifications. 

In our main specifications we estimate a linear effect in transit time, which 

treats an increase from 6 to 7 days the same as an increase from 26 to 27 days. 

However, at sufficiently long horizons consumers may be indifferent to marginal 

changes in delivery time.  In columns 1 and 2 we experiment with a quadratic in 

transit time, and find that delays have diminishing impact at longer time horizons.  

At the sample mean of 23 days (about the average travel time for Asia), our 

estimated effects match those from Tables 3 and 4:  ad-valorem time costs of 2.3 

percent per day (for revenues), and 0.7 percent per day (for revenues per 

shipment).  At 34 days of travel time (about the average for Africa, the most 

temporally distant region) the effect just reaches zero.11  

In our main sample we trimmed outlying observations for relative prices and 

relative freight rates, and dropped products in which the average air share for an 

 

11
 Note that these estimates do not rely on the full range of transit time (from 3 to 48 days) in the data, but instead fit 

the quadratic on the variation in coast-differenced transit time shown in Figure 2.   



HS code was less than 1% or greater than 99%.  In columns 3 and 4 of Table 6 we 

include all these dropped observations.  We find somewhat larger estimates on 

transit days, smaller estimates on freight prices and larger estimated values for 

time sensitivity. 

In Section II we discussed how our fixed effects specifications account for 

possible sources of endogeneity in freight rates.  For completeness we also 

experiment with using lagged values as instruments.  In columns 5 and 6 we 

instrument the current period freight rate with its first lag, and to examine the 

impact of dynamics, we also include the lagged dependent variable and 

instrument for today’s freight rate with the second lag of the freight rate.  The 

conclusion is the same for both dependent variables. Compared to the baseline 

estimates reported in Tables 2 and 3, we find somewhat higher elasticities for the 

freight rate variables, somewhat smaller coefficients on days in transit, but the 

fundamental message is unchanged.12 

It may be that movements in commodity prices or quality over time affect the 

decision to air ship.  While coast differencing eliminates this effect for each 

exporter, it does so at the cost of significantly cutting the sample.  In columns 7 

and 8 we allow for separate exporter effects and product x time effects to 

eliminate this source of variation while retaining a larger sample.  We find time 

values similar to previous specifications. (Including only year effects in each of 

the specification also has no effect.)  We also experimented with with re-

estimating our main specifications on sub-samples of the data (e.g. using only 

observations from Europe and Asia) or allowing slope coefficients to vary across 

sub-samples (by exporter income, by year, by season within each year).  While 

intercepts varied over these sample cuts, indicating differences in the average 

reliance on air shipment, we found no significant changes in slope coefficients 

 

12
 We also experimented with dropping observations with very low ocean quantities to account for the possibility that 

shippers charge higher rates when firms cannot fill containers.  Results are unchanged. 



relative to results reported in Tables 2 and 3.  There were, however, significant 

differences across product categories, a point we take up in the next section. 

One concern is that goods do not appear in our sample unless they are imported, 

and are both air and ocean shipped.  As a consequence we will lose goods that 

have no time sensitivity (and so are only ocean shipped), and goods that have 

extreme time sensitivity (and so are only air shipped, or only produced locally).  It 

is not obvious whether the balance of these effects raise or lower the aggregate 

sensitivity of trade to time delays.  A possible hint can be found in Table 1 and 

Figure 1.  Mode-mixing occurs in 75 percent of trade by value, and the air share 

of imports is only slightly higher for mode-mixing observations than for imports 

as whole while the time series behavior is the same.  This suggests that goods left 

out of our sample are balanced between air only and ocean only cargo. 

One way to check selection on timeliness is to examine production of “local” 

goods to see if goods that are time sensitive but too expensive to air ship are more 

likely to be produced at home.  Unfortunately, US domestic output data is too 

aggregated to be of use.  An alternative is to examine the kinds of goods imported 

from Mexico and Canada since these can reach the US market very quickly 

without the added cost of air shipping.  We calculate the North American share of 

imports of good k at time t and include this as a control in our estimates from 

Tables 2 and 3, both in levels and interacted with days. Goods with a high North 

American import share have a smaller intercept and the interaction with transit 

days is positive and significant. In the coast differenced specification, increasing 

the North American share from 0 to 1 increases time sensitivity from 0.02 to 

0.024 for the revenue specification and from 0.005 to 0.01 for the revenue per 

shipment specification.  (Full details in the appendix.)  From this we conclude that 

when goods are highly time sensitive but too heavy to air ship, they are produced 

within North America and are more likely to be selected out of our sample and 

produced locally. 



Goods will not be in our sample if firms do not mix modes.  As a final 

robustness check we experimented with a probit estimation based on data in 

which only a single transport mode was chosen. The estimation is based directly 

on equation (3), and is conceptually similar to the relative revenue specification, 

except that here we estimate the probability that air shipping is chosen as a 

function of freight prices and transit time.  Details of the derivation and 

specification are reported in the appendix.  We find coefficients with the same 

sign pattern as those in Tables 3-6 and using point estimates, time effects of 

similar magnitude. However, the estimated effect of shipment time is not 

statistically significant once we cluster standard errors.  We attribute this loss in 

precision to three factors:  losing information about the quantity of sales in the 

dependent variable; the inability to incorporate rich controls for quality 

heterogeneity in the demand equation; and the need to estimate rather than 

observe shipping costs for the transport mode not chosen. 

D. Estimating the Value of Time by Commodity 

The specifications above allow for heterogeneity in the intercepts, but impose 

homogenous slope coefficients across broad product groups. In other words, we 

assume that all product categories have the same modal use response to changes 

in freight prices and to time delays. This has the advantage of maximizing 

available observations and sources of variation but at the cost of losing potentially 

interesting information about how time values differ across commodities. 

To examine heterogeneity in the coefficient estimates we grouped products by 

End-Use Category and re-estimated equations (8) and (9) separately for each, 

using Exporter x HS6 fixed effects. We report results for 1-digit End Use 

groupings in Table 5.  Focusing on relative revenues, equation (8), we find that 

results are qualitatively similar to Table 2 across all groups.  However, we find 



substantially higher time values for Automotive Goods (.043, that is, one day is 

equal to a 4.3 percent ad-valorem tariff) and for Foods and Beverages (.031).   

When we examine relative revenues per shipment to control for the modal 

extensive margin, equation (9), we see similar sign patterns, but much more 

dispersion in the estimates. Here the high time value categories are Automotive 

(.013) and Capital Goods (.009), with much lower estimates for Consumer Goods 

and Industrial Supplies (.004), and an (insignificant) negative estimate on both 

transit days and time value for Foods and Beverages.  Above we highlighted two 

alternative stories (firms changing modes, or firms changing the number of 

shipments to reach a greater number of customers) for the more modest 

coefficients found when using equation (9).  What seems likely in the case of 

Foods and Beverages, where storability is particularly important, is that firms 

respond to long shipment times by making more frequent shipments on airplanes. 

Once we control for this channel there is no remaining response in terms of 

revenues per shipment. 

The one-digit End Use categories are still fairly broad and we next group 

products at the most disaggregated End-Use Category and re-estimate equations 

(8) and (9) separately for each, using Exporter x HS6 fixed effects.  When 

estimating equation (8), the mean over the individual group estimates shows an 

average time sensitivity of about 0.02, which is very similar to Table 2, column 

4.13  However, there is significant heterogeneity in the coefficient estimates, with 

some values insignificantly different from zero and other time values ranging as 

high as .072 or one day being worth 7.2 percent ad-valorem  (Full results 

available in the appendix).   

As we disaggregate we face a tradeoff – greater flexibility in allowing the 

model to fit different coefficients for different product categories versus the 

 

13
 This is to be expected, as the pooled estimates in Table 3 are a consistent estimate of the average impact over 

products (see Zellner, 1969; Pesaran and Smith, 1995). 



possibility of greater imprecision due to the reduced number of observations from 

which to identify those coefficients. The question is then whether coefficient 

heterogeneity reflects true variation in response parameters or noise. 

A possible indication that these estimates reflect true variation can be found in 

Djankov, Freund, and Pham (2010).  They used time cost estimates taken from an 

earlier draft of this paper and showed that countries with long customs delays 

experienced relatively sharp reductions in exports for goods that exhibited the 

highest time sensitivity. 

To get at this issue more systematically, we focus on two characteristics of 

products that seem especially relevant for timeliness: perishability, and whether 

the product is a manufactured intermediate input.  To capture these characteristics 

we drill down to the HS-10 digit level and identify product descriptions that 

contain the word “fresh” (for perishability) or “parts” or “components” (for 

intermediate inputs).  We then calculate, for each exporter-HS6-time observation 

the value share of HS-10 products containing those words, and include this 

variable both independently and interacted with transit time.14   

Results are reported in Table 6.  Focusing on revenues per shipment there are 

two interesting findings.  First note that a higher “fresh” share increases the use of 

air shipment, but does not significantly interact with transit days.  A likely 

explanation is that products like “fresh fish” are so time sensitive that any delay 

longer than a few days ruins the product.  The effect shows up entirely in a higher 

use of air shipment for all exporters, regardless of ocean transit time to the US. 

 There is a very different pattern with parts and components.  An increase in the 

parts and components share of trade for a given exporter-HS6 product results in a 

sharp increase in the time sensitivity of that trade. Comparing a product with zero 

 

14
 Recall that our observations are at the level of HS-6digit products and that we include exporter - hs6 fixed effects.  

By using the movements in the shares of the HS-10 digit products we induce changes over time for a given exporter-hs6 
that can be used to identify differences in the coefficient. 



component share to one that is 100 percent components raises time sensitivity by 

60 percent. 

III. Conclusion 

Airplanes are fast, expensive, and carry a large and rising share of world trade.  

In this paper we model substitution between the use or air and ocean cargo in 

trade and show how to extract consumers’ willingness to pay for time savings 

from that choice. Our estimates control for selection into trade, for unobserved 

variation in quality, for endogeneity of freight charges, and for extensive margin 

changes in the sets of firms participating in trade by mode.  We estimate that each 

day in transit is worth 0.6 to 2.1 percent of the value of the good, and that long 

transit delays significantly lower the probability that a country will successfully 

export a good.  Our estimates vary over goods, with especially high time 

sensitivity exhibited in end use categories motor vehicles and parts, and capital 

goods, and in HS classifications with high shares of parts and components. 

Comparing a product with zero component share to one with a 100 percent 

component share raises time sensitivity by 60 percent. 

This last result connects two important changes in patterns of international 

specialization and trade.  In the last several decades the cost of air cargo has 

dropped an order of magnitude, and the use of air cargo has risen 2.6 times faster 

than ocean cargo.  At the same time there has been a sharp rise in intermediate 

input trade as firms fragment production across multiple locations.  While many 

products are time sensitive due to inventory holding costs, perishability, rapid 

technological obsolence, and uncertain demand, these problems are magnified in 

the presence of fragmentation.  It seems reasonable to conclude that the sharp 

reduction in the cost of linking far flung production sites through fast moving 

airplanes has been an important factor in growing fragmentation worldwide.  



Finally, our results are relevant to the increased emphasis on trade facilitation – 

identifying regulatory or other nontariff barriers to trade – in trade negotiations 

and among aid and development groups such as USAID and the World Bank.  

Many efforts to facilitate trade, such as streamlining customs procedures or 

improving port infrastructure, generate benefits measured in days saved.  With 

our estimates of the value of each day saved one can then calculate the monetary 

benefits of these initiatives and how they compare to the cost incurred. 
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FIGURE 1. TRENDS IN AIR-VALUE SHARES 
 

 

 

 

 



 

FIGURE 2. TRANSIT TIMES 

 

 

 

 

 

 



  

 

TABLE 1—VARIATION IN AIR AND TRADE SHARES ACROSS COMMODITY GROUPS AND REGIONS 

 All Observations Mode Mixing Observations Median Air Premium 

 Group Share 

Of Imports 

Air 

Share 

Share of 

Group Imports 

Air 

Share 

Value Weight 

       
All Imports: 1.00  .28 .75 .30 .05 6.46 

       

Region:       

Central America .03 .13 .60 .14 .03 3.25 

South America .06  .12  .33  .21  .06  4.91  

Europe .28  .39  .73  .38  .03  5.88  

Asia .59  .27  .85  .28  .08  7.73  

Australia/Oceania .01  .18  .48  .23  .04  6.00  

Africa .04  .10  .15  .11  .08  5.42  

       

End Use Categories:       

Food .04  .04  .50  .06  .14  7.11  

Industrial Supplies .23  .09  .36  .14  .07  8.90  

Capital Goods .28  .52  .89  .52  .02  6.77  

Automotive .12  .02  .92  .02  .06  7.58  

Consumer Goods .30  .31  .86  .24  .06  5.20  

Other .02  .80  .95  .80  -.01 7.70  

       

Product Group:       

Components .12  .41  .94  .39  .04  6.45  

Fresh .01  .23  .49  .23  .17  5.55  

Notes: Air Premium Value =      = (1+air charge/air value)-(1+vessel charge/vessel value). Air Premium 

Weight=     =(air charge/air weight)/(vessel charge/vessel weight). A mode mixing observation is a 

HS6 Exporter  Year  Coast observation that shows positive air and ocean values. 

Source: Author calculations.  

 
 

 

 

 

 

 

 

 

 

 



 

TABLE 2—REVENUE SPECIFICATION 

 (1) (2) (3) (4) (5) 

Log Rel. Price -.078 -.074 .027 .009 .067 
 (.027)*** (.020)*** (.011)** (.009) (.014)*** 

      

Log Rel. Freight Cost -6.46 -5.823 -3.346 -2.673 -3.301 

 (.355)*** (.299)*** (.136)*** (.113)*** (.196)*** 

      

Transit Days .018  .045  .049  .060  .069  

 (.008)** (.010)*** (.014)***  (.017)***  (.018)***  

Tau .003  .008  .015  .022  .021  
 (.001)**  (.002)***  (.004)***  (.007)***  (.006)***  

Fixed Effects None  Exporter Exporter Exporter  Coast  
   +HS6  HS6 Differenced 

Obs. 528977 528976 528721 513424 244530 
R-Squared .121  .157  .356  .571  .159  

Notes: Estimation of equation (8). Dependent Variable: log(air revenue/ocean revenue). Standard errors are robust and 

clustered by exporter. Regressions include a constant. 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

 

TABLE 3—REVENUE PER SHIPMENT SPECIFICATION 

 (1) (2) (3) (4) (5) 

Log Rel. Price .037 .039 .038 .046 .070 
 (.005)*** (.004)*** (.006)** (.006)*** (.007)*** 

      

Log Rel. Freight Cost -1.861 -1.900 -1.584 -1.509 -1.554 

 (.094)*** (.081)*** (.077)*** (.075)*** (.095)*** 

      

Transit Days .008 .011 .008 .009 .010 

 (.002)*** (.002)*** (.002)***  (.002)***  (.002)***  

Tau .004  .006  .005  .006  .006  
 (.0008)**  (.001)***  (.001)***  (.001)***  (.001)***  

Fixed Effects None  Exporter Exporter Exporter  Coast  
   +HS6  HS6 Differenced 

Obs. 528977 528976 528721 513424 244530 
R-Squared .049  .057  .144  .351  .041  

Notes: Estimation of equation (9). Dependent Variable: log(air revenue per shipment/ocean revenue per shipment). 

Standard errors are robust and clustered by exporter. Regressions include a constant. 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

 

 

 



 

TABLE 4—ROBUSTNESS CHECKS 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Variable 

In Log: 

Revenue Revenue 

per Ship. 

Revenue Revenue 

per Ship. 

Revenue Revenue 

per Ship. 

Revenue Revenue  

per Ship. 

Log Rel.  .066 .070 .040 .064 -.042 .037 .038 .046 
Price (.013)*** (.007)*** (.013)*** (.007)*** (.034) (.020)* (.012)*** (.007)*** 

         

Log Rel. -3.147 -1.532 -2.488 -1.242 -5.796 -2.763 -3.52 -1.619 

Freight  
Cost 

(.233)*** (.094)*** (.186)*** (.091)*** (.828)*** (.480)*** (.149)*** (.075)*** 

         

Transit  .225 .032 .077 .012 .028 .007 .051 .009 

Days (.038)*** (.005)*** (.020)*** (.002)*** (.0006)*** (.0003)*** (.015)*** (.002)*** 

         

Transit  -.003 -.0005       

Days Squared (.001)*** (.0001)***       

         

Lag Dep.     .648 .383   

Variable     (.004)*** (.004)***   

         

Lag Freight     1.446 .776   

Cost     (.189)*** (.115)***   

         

Tau .023  .007  .031  .010     015 005 
 (.005)*** (.0009)***  (.010)***  (.002)***    (.004)*** (.001)*** 

Fixed Coast  

Differenced 

Coast 

Differenced 

Coast  

Differenced, IV 
Exporter   

HS6 Year 

Y 

Effects 

Obs. 244530  244530  321744  321744  110754  110754  505252  505252  
R-Squared .21 .045  .153  .045    .353 .143 

Notes: Standard errors in columns 1-4 are robust and clustered by exporter. The panel IV in columns 5 and 6 was 

implemented using Stata’s xtivreg command which does not accommodate robust or clustered standard errors. The first 

stage R2 for columns 5 and 6 are 0.43 and 0.42. In both IV regressions the instrument for the contemporaneous log relative 
freight rate is the second lag of the log relative freight rate. In both first stage regressions the instrument significantly 

predicts the endogenous variable and the F test rejects the null hypothesis that the instruments don’t have a joint impact on 

the endogenous variable. Regressions include a constant. 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

 

 

 

 

 

 

 



 

TABLE 5—TIME COSTS BY END-USE GROUP 

End Use: 
Foods 

Beverages 

Indust. 

Supplies 

Capital 

Goods 

Auto- 

motive 

Consumer 

Goods 

Log Revenue Specification: 
 (1) (2) (3) (4) (5) 

      
Log Rel. Price -.026  -.087  .072  .021  .016  

 (.034)  (.011)***  (.016)***  (.030)  (.013)  

      

Log Rel. -1.522  -2.539  -3.132  -1.643  -2.969  

Freight Cost (.208)***  (.125)***  (.319)***  (.241)***  (.126)***  

Transit Days .048  .062  .063  .071  .058  

 (.010)***  (.013)***  (.014)***  (.015)***  (.023)**  

      

Tau .031  .024  .020  .043  .019  

 (.008)***  (.006)***  (.006)***  (.011)***  (.008)**  

      

Obs. 12065  143860  138079  18527  211155  

R-Squared .61  .552  .568  .498  .562  

      
Log Revenue per Shipment Specification: 

 (6) (7) (8) (9) (10) 

      
Log Rel. Price .047  -.042  .117  .077  .046  

 (.028)* (.007)***  (.010)***  (.014)***  (.010)***  

      

Log Rel.  -.784  -1.647  -1.463  -.897  -1.619  

Freight Cost (.103)***  (.079)***  (.188)***  (.094)***  (.094)***  

      

Transit Days -.004  .007  .013  .012  .007  

 (.003)  (.003)**  (.004)***  (.002)***  (.003)**  

      

Tau -.005  .004  .009  .013  .004  

 (.004)  (.002)**  (.002)***  (.003)***  (.002)**  

      

Obs. 12065  143860  138079  18527  211155  

R-Squared .452  .365  .348  .354  .324  

Notes: Estimation of equations (8) and (9) by product subsamples. Standard errors are robust and clustered by exporter. 

Regressions include a constant. 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

 

 

 

 

 



TABLE 6—TIME COSTS BY PRODUCT CHARACTERISTICS 

 (1) (2) (3) (4) 

Dependent Variable: Log Revenue Log Revenue per Shipment 

Log Rel. Price .009  .009  .046  .046  
 (.009) (.009) (.006)*** (.006)*** 

     

Log Rel. Freight Cost -2.676  -2.676  -1.510  -1.510  

 (.114)*** (.114)*** (.075)*** (.075)*** 

     

Transit Days .060  .060  .008  .009  

 (.017)*** (.017)*** (.002)*** (.002)*** 

     

Component Share .122  -.054  

 (.094)  (.036)  

     

Component Share   Days 
Days 

-.002  .004  

 (.005)  (.002)***  

     

Fresh Share  .697  .306 

  (.391)*  (.137)** 

     

Fresh Share   Days 

 

 -.037  -.010 

  (.018)**  (.007) 

     
Tau (Share=0) .023  .023  .005  .006  

 (.007)***  (.007)***  (.001)***  (.001)***  

     

Tau (Share=1) .022  .009  .008  -.0006  

 (.006)***  (.005)  (.001)***  (.004)  

Obs. 512012 512012 512012 512012 
R-Squared .571 .571 .352 .352 

Notes: Estimation of equations (8) and (9) by product characteristics. Standard errors are robust and clustered 

by exporter. Regressions include a constant. 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 


